Dr. Alexander Kharlamov De Haar Research Foundation, Heerhugowaard, The Netherland Email: <u>akharlamov@dhrfpro.com</u>

> DOI: Review paper Received: March 10, 2025 Accepted: April 1, 2025

DECIPHERING THE TOXICOPHARMACOLOGY OF SUDDEN RUSSIAN DEATH SYNDROME: UNRAVELING SURREAL CHALLENGES AT THE INTERSECTION OF CARDIO-TOXICOLOGY AND INTELLIGENCE STUDIES IN GLOBAL NORTH

Abstract: The resurgence of Cold War-era tactics, highlighted by the poisoning and death of Russian opposition leader Alexei Navalny in February 2024, raises significant concerns for healthcare professionals in the Global North. Poisoning by chemical warfare agents, notably organophosphorus compounds, increasingly targets Russian dissidents and defectors, with over 80 suspected cases reported in the past decade. These incidents frequently occur on NATO territory, underscoring the transnational nature of the threat. Clinically, such poisonings often present as acute myocardial infarction complicated by cardiogenic shock, posing diagnostic and therapeutic challenges with potentially fatal outcomes. The absence of specialized training and immediate access to antidotes further heightens mortality risk. This article examines the cardiotoxic mechanisms of key lethal agents used in these operations, highlighting their implications at the intersection of biomedicine and intelligence studies. It explores the broader geopolitical context, emphasizing the critical need for heightened awareness and preparedness among general practitioners, toxicologists, neurologists, and cardiologists. By addressing these emergent threats, healthcare systems in NATO countries can better mitigate the risks associated with clandestine toxicopharmacological attacks, ultimately safeguarding patient outcomes and *national security.*

Keywords: *Toxicopharmacology, Sudden Russian Death Syndrome, Global North Challenges*

Introduction

In an era of rising geopolitical tensions and unconventional threats, the risk of chemical, biological, radiological, and nuclear (CBRN) exposure has become a pressing concern for global health systems (Reddy, 2024). The increasing use of toxic agents in warfare, terrorism, and covert operations underscores the urgent need for medical professionals trained in the prevention, detection, and treatment of CBRN incidents to protect civilian populations and ensure national security (Reddy, 2024; Brunka et al., 2022). This review aims to evaluate the role of Russian intelligence operations in the deployment of CBRN agents, particularly chemical agents, as tools of covert warfare and political influence while highlighting their cardiotoxic effects at the intersection of cardiology, toxicology, and intelligence studies.

Methods

This review examines open-source documented cases of CBRN agent use by Russian operatives, analyzing their cardiotoxic and toxicological profiles while assessing healthcare preparedness in NATO and allied nations. The study identifies patterns, refines medical countermeasures, and fosters intersectional collaboration across cardiology, toxicology, and intelligence studies to mitigate future threats. Following PRISMA guidelines, a structured search (including PubMed, Scopus, and Web of Science) across medical, geopolitical, and intelligence sources (2000–present) incorporated case reports, toxicological studies, and declassified intelligence. Keywords included "Russian intelligence," "CBRN weapons," "chemical warfare," "toxicology of nerve agents," and "state-sponsored poisonings." A narrative synthesis identified recurring CBRN use patterns, medical gaps, and policy needs while maintaining ethical and security considerations.

Results

Over the last century, humanity has been researching effective methods to develop lethal CBRN warfare agents (Reddy, 2024) against adversary populations. International agreements limit the usage of many refined lethal agents, but the tense global situation persists, and state actors require specific types of weapons to fulfill their objectives. For this

purpose, tailored chemical (Reddy, 2024; Steindl et al., 2021; Opravil et al., 2023; Brunka et al., 2022; Charejoo et al., 2023) and radiological (Reddy, 2024; Brunka et al., 2022, Nathwani et al., 2016, Jefferson et al., 2009) warfare agents are employed nowadays (see Table 1), with the most promising ones being organophosphate (OP) compounds (Reddy, 2024, Brunka et al., 2022). Medical professionals should be adequately prepared to address any potential perils. The demand for proper medical knowledge in this field is also dictated by the fact that a physician's experience should allow for urgent differential diagnosis, taking into account the similarity of symptoms, for example, between OP warfare agent and pesticide poisoning (see Table 1) (Reddy, 2024, Steindl et al., 2021, Opravil et al., 2023, Brunka et al., 2022), as well as overdose with acetylcholinesterase inhibitors, which are actively used in the treatment of Alzheimer's disease, Lewy body dementias, Parkinson's disease, myasthenia gravis, glaucoma, postural tachycardia syndrome, sleep disorders, and schizophrenia (Steindl et al., 2021, Opravil et al., 2023, Charejoo et al., 2023).

Events of recent years, reminiscent of the Cold War era between Russia and the West, including the demise of Russian opposition leader Alexei Navalny in February 2024, rumored to have been poisoned in prison beyond the Arctic Circle in Russia (Stewart 2024) serve as a basis for confident apprehensions among cardiologists due to the lofty risk of contact in Global North countries with patients who have fallen victim to warfare poisoning. Meanwhile, the primary clinical manifestation for such a patient could epitomize an out-of-hospital cardiac arrest or myocardial infarction (type 2 as defined in the fourth universal definition, with a very high risk of coronary atherothrombosis) mimicking acute coronary syndrome accompanied by pulmonary edema (see Table 1) with a high likelihood of a fatal outcome (Kuo et al., 2017, Cha et al., 2014), especially in the absence of necessary professional training and urgent, specific medical interventions.

The concern emerges from the fact that despite the Russian intelligence primarily targeting Russian dissidents and defectors (former agents) (Brunka et al., 2022; Stewart, 2024; Bellingcat Investigation Team, 2020; Wikipedia, 2024; Carroll et al., 2024), this occurs, as a matter of course, suddenly and on the territory of NATO (the North Atlantic Treaty Organization) countries. This potential was recently highlighted in the 2024 Annual Threat Assessment of the United States Intelligence Community (available from: https://www.dni.gov/files/ODNI/documents/assessments/ATA-2024-Unclassified-

Report.pdf, accessed on March 14, 2024). There is alleged knowledge of a state program aimed at developing at least 21 lethal chemical warfare agents in Russia (Bellingcat

Investigation Team, 2020). However, there are several apparent cases of covert influence where the targets of elimination were not only Russian citizens but also socio-political leaders of foreign states, such as Palestine and others (Brunka et al., 2022; Stewart, 2024; Bellingcat Investigation Team, 2020, Wikipedia, 2024). From 2014 to 2017, there were attempts to wipe out 38 privileged citizens of Russia (Brunka et al., 2022; Wikipedia, 2024). Since the onset of the war in Ukraine from 2022 to the present, there have been at least 51 cases of poisonings (Brunka et al., 2022, Wikipedia, 2024), defenestrations, and other unorthodox deaths (dubbed the "Sudden Russian Death Syndrome" in the media; see The December 29, 2022. Available Atlantic, from: https://www.theatlantic.com/ideas/archive/2022/12/russian-tycoon-pavel-antov-dies-putinukraine/672601/, accessed on March 3, 2024) in Russia, Bulgaria, India, the United Kingdom, Spain, France, and the United States (Brunka et al., 2022, Stewart, 2024, Wikipedia, 2024, Carroll et al., 2024). Undoubtedly, the escalation of confrontation between Russia and Western civilization, notably with NATO countries, which conceivably has historical roots dating back to 1054 AD (since the Great Schism of the Christian Church into Western and Eastern branches), holds paramount extent in this narrative. The recent months of this altercation serve as evidence of tangible threats emanating from Russia, undergoing further dismantling of the liberal-democratic order and reinforcement of an authoritarian dictatorship regime with imperialistic ambitions and a geopolitical strategy aimed at countering NATO.

Russia is oftentimes absurdly and misleadingly portrayed (Riehle, 2024) as an illustration of incompetence, ignorance, and indifference in intelligence games. However, despite all its apparent mediocrity and disregard for the principles of plausible deniability, Russia managed to catch Europe and the United States with a strategic surprise (Ikani et al., 2023) regarding the war in Ukraine and other disputed territories. Moreover, in the case of poisonings, Russian intelligence, for instance, even utilized cyber-attacks (Crerar et al., 2018) against international organizations in the Netherlands to conceal indispensable information and disorient the global community. Undoubtedly, Russian intelligence engages its distinctive bold approach with comparative directness and ambiguity of its intentions, including falsehood propaganda (per the conclusion of RAND analytics; available from: https://doi.org/10.7249/PE198, accessed on March 15, 2024), when the principal orchestrator of the action is fundamentally evident, yet Russian official bodies

deny their involvement. This is accomplished within a strategy aimed at manipulating information and public opinion to sweeten the effect of uncertainty in ongoing events. In this narrative, a physician must use the relevant open-source information and promptly presume the fact of a patient's poisoning by a lethal toxic agent, taking vital steps to save the patient's life.

Essentially, the situation boils down to the fact that Russian intelligence has been operating tactical chemical weapons (for example, fourth-generation OP compounds with different volatility) (Reddy, 2024, Steindl et al., 2021, Opravil et al., 2023, Brunka et al., 2022, Charejoo et al., 2023, Stewart, 2024, Bellingcat Investigation Team, 2020, Wikipedia, 2024), radioactive dust (including nanoparticles) (Reddy, 2024, Brunka et al., 2022, Nathwani et al., 2016, Jefferson et al., 2009, Stewart, 2024, Bellingcat Investigation Team, 2020, Wikipedia, 2024), and other lethal poisonous agents (see Table 1) on NATO territory (Reddy, 2024, Brunka et al., 2022, Stewart, 2024, Bellingcat Investigation Team, 2020, Wikipedia, 2024) for many years, which, incidentally, directly contradicts the Chemical Weapons Convention (entered into force in 1997), and in the case of polonium-210, contravenes the International Convention for the Suppression of Acts of Nuclear Terrorism (adopted by the United Nations General Assembly in 2005). New lethal agents (often with officially undisclosed chemical formulas) with higher toxicity, controllability, and stability (including binary agents that can be stored as two less toxic chemical ingredients for more accessible transportation and handling), along with further poisoning approaches employing more sophisticated delivery techniques (nano-encapsulation, nano-powders) and devices, in combination with other poisons to disguise the primary agent (therefore misleading and delaying antidote and medical countermeasures), have been deliberately developed (Reddy, 2024, Brunka et al., 2022, Stewart, 2024, Bellingcat Investigation Team, 2020, Wikipedia, 2024) to enrich the effectiveness of such weapons for warfare or intelligence tasks and to circumvent violations of international agreements. The most intriguing aspect in this direction is the development of methods for deterring the lethal effects of toxic substances using pharmacological methods of prevention and pre-treatment (e.g., in the case of OP poisoning – a carboxylate pyridostigmine bromide, transdermal patches with physostigmine combined with procyclidine without adverse effects and behavioral deficit (Charejoo et al., 2023).

With the progression of the war at NATO's borders, the active involvement of NATO countries (including initiatives of the European Union and the United States) in financial and military reinforcement to the Ukrainian armed forces against Russia's military operation, the inflated activity of Russian intelligence services in Europe (Stewart, 2024, Bellingcat Investigation Team, 2020, Wikipedia, 2024, Carroll et al., 2024, Crerar et al., 2018), the rise in cases of agent eliminations in Russia (Reddy, 2024, Brunka et al., 2022, Stewart, 2024, Bellingcat Investigation Team, 2020, Wikipedia, 2024), and the boost of defector agents fleeing from Russia to NATO countries (Carroll et al., 2024), the risk of a repeated "terrorist" use of poisonous weapons (Reddy, 2024, Brunka et al., 2022, Wikipedia, 2024) in the territories of Global North countries remains exceptionally tall. The probability of identifying such a patient in routine hospital practice also continues to inflate. Cardiologists must comprehend the clinical challenge they will face in such a scenario promptly and how to manage such a patient. Specific pharmacological tactics and other forms of medical assistance are required urgently (see Table 1), as the number of irreversible shifts in the patient's body resumes to rapidly escalate with high odds of a fatal outcome, including as a consequence of cardiovascular system deterioration. Some complementary recommendations have been acquired in the United States (National Highway Traffic Safety Administration's Office of Emergency Medical Services 2024) and other NATO countries.

Conclusion

The increasing threat of CBRN exposure necessitates a healthcare workforce adept in advanced countermeasures. Comprehensive training in CBRN detection, rapid diagnosis, and targeted treatment is essential to mitigate the impact on public health, ensure timely intervention, and reduce morbidity and mortality in civilian and military contexts. This preparedness is critical to safeguarding populations against evolving global security risks.

Table 1. Paramount cardiovascular effects, diagnostics, and pharmacological management

 of the lethal warfare agents.

Class of lethal agent	Introductory clinics and	Diagnostics and Lab	Antidote and relevant life-saving
	cardiovascular effects	detection	pharmacological strategy
	Chemical	Warfare Agents	
Nerve organophosphorus/	Main toxic effects of the nerve	Detection of AChE and	Personal protective equipment and
organophosphate agents	agents (effects of AChE	BChE levels (in the blood)	decontamination (e.g., PVA, Borax) are
(Reddy, 2024, Steindl et al.,	inhibitors):	(including combat gas	mandatory!
2021, Opravil et al., 2023,	Cholinergic;	detector kits and mobile	
Brunka et al., 2022,	Noncholinergic;	kits);	Post-exposure treatment (conventional
Charejoo et al., 2023, 8-12,	Oxidative stress;	The activity of AChE and	antidotes are not always practical due to
Stewart, 2024, Kuo et al.,	Neuroinflammation and systemic	BChE (in blood);	AChE aging but are potentially lifesaving)
2017, Cha et al., 2014,	inflammation;	Detection of albumin with	(National Highway Traffic Safety
Bellingcat Investigation	Synaptotoxicity;	phosphorylated tyrosine-	Administration's Office of Emergency
Team, 2020, Wikipedia,	Calcium dysregulation.	411 (in the blood);	Medical Services, 2024) [§] :
2024, National Highway		Detection of toxic agent	1) Atropine (to control muscarinic
Traffic Safety	Main symptoms (National	(in blood and urine - as a	symptoms – three Bs: Bradycardia,
Administration's Office of	Highway Traffic Safety	complex with AChE or	Bronchoconstriction, Bronchorrhea);
Emergency Medical	Administration's Office of	BChE): colorimetry with	2) Reactivators of AChE/ Oximes
Services, 2024)	Emergency Medical Services,	gold nanoparticles, GC-	(pralidoxime chloride/2-PAM Cl,
Novichok (A-agents): A-	2024):	MS/MS, LC-MS/MS	obidoxime, HLö7, methoxime/MMB4,
230*, A-232*, A-234*, A-	"SLUDGE": Salivation,	(including complexes on	MB408, MB442, MB444, asoxime
242*, A-262, C01-A035,	Lacrimation, Urination, Diarrhea,	erythrocytes and bound to	chloride/HI-6, trimedoxime, K-oximes,
C01-A039, C01-A042;	Gastrointestinal cramps, Emesis.	albumin);	timedoxime bromide/TMB4,
V-agents: EA-3148, V-sub	"DUMBBELS": Diarrhea,	Contact the expert - a local	dimethanesulfonate, ionizing zwitterionic
x/GD-7, VE, VG, VM, VP,	Urination, Miosis/Muscle	coordinator for Weapons	aldoximes);
VR, VS, VX;	weakness,	of Mass Destruction or	3) Combo of atropine and oximes in
G-agents: tabun (GA), sarin	Bronchospasm/Bronchorrhea,	Chemical Warfare Agents	autoinjectors: DuoDote or Antidote
(GB), chlorosarin (GC),	Bradycardia, Emesis,	or a laboratory designated	Treatment Nerve Agent Autoinjector
soman (GD), ethyl sarin	Lacrimation,	by the OPCW;	(ATNAA) or Mark 1 kit;
(GE), cyclosarin (GF), GV	Salivation/Sweating.	Full toxicological	4) Bioscavengers ^{\$} :
Pesticides: DFP, parathion,		examination is highly	4a. Enzymatic hydrolysis of the A-agent
paraoxon, malathion,	Cardiovascular effects (Kuo et	recommended;	(e.g., PON1) or enzyme-based catalytic
chlorpyrifos, phorate oxon,	al., 2017):	Neurophysiological	nerve agent bioscavengers (in vitro, pre-
aldicarb, monocrotophos,	1. First, there is sympathetic	studies;	clinical studies, pilot clinical studies);

2			
diazinon, etc.	overactivity (which can cause	Cardiovascular	4b. Beta-esterases: fetal bovine serum
Natural: guanitoxin	plaque erosion and	examination.	AChE (FBSAChE) or equine serum BChE
(anatoxin-a(S) "Salivary";	atherothrombotic or		(EqBChE) or human serum BChE
the substance has an analog	thromboembolic complications),		(HuBChE) or fresh frozen plasma (as a
among pesticides -	followed by protracted severe		source of BChE) (pre-clinical studies, pilot
paraoxon).	parasympathetic activity (which		clinical studies);
	can cause spasms of coronary		4c. Pseudo-catalytic bioscavengers: a
	arteries), leading to QT		combo of beta-esterases and oximes;
	prolongation. Polymorphous		5) Alternative approaches: red blood cell
	ventricular tachycardia (Torsades		transfusion, special phenols (non-oxime
	de Pointes) and ventricular		reactivators of AChE), site-directed
	fibrillation follow.		mutant AchE, and ACh analogs
	2. Metabolic imbalance boosts		(acetylmonoethylcholine (AMECh) and
	the patient's susceptibility to		acetyldiethylcholine (ADECh) (pre-
	hypoxemia, acidosis, and		clinical studies, pilot clinical studies);
	electrolyte imbalances, resulting		6) Specific antidotes are in development
	in arrhythmic consequences.		by the Intelligence and Military research
	3. The toxic effects instantly		organizations (classified data; pre-clinical,
	affect the myocardium, causing		pilot clinical studies)**;
	myocardial injury and infarction		7) Anti-convulsive and neuroprotective
	(Cha et al. 2014).		therapy: benzodiazepines (diazepam,
			lorazepam, midazolam), antioxidants, anti-
	Possible cardiovascular		inflammatory therapy (hydrophilic
	manifestation (National		neurosteroids), NMDAR (ketamine), and
	Highway Traffic Safety		other glutamatergic inhibitors, magnesium
	Administration's Office of		sulfate, lipid emulsion (lessens access to
	Emergency Medical Services,		active biological sites, and clasps energy
	2024):		for poisoned tissues), etc;
	Bradycardia (a result of		8) Class III anti-arrhythmic agents;
	atrioventricular dysregulation		9) Treatment of myocardial infarction (if
	causing PR prolongation) with a		necessary) by the 2023 ESC Guidelines
	risk of syncope (nerve agents can		for the management of acute coronary
	cause tremors and seizures up to		syndromes or national recommendations;
	unconsciousness and coma);		10) Supportive care, ventilation, oxygen
	Hyperkalemia with a high risk of		therapy, sedation, dialysis (if necessary);
	dysrhythmias;		11) Therapy of bronchospasm:
	Extrasystole, tachycardias;		inhalation/nebulization with ipratropium
L			

L			
	Myocardial infarction (with "wet"		and one of the beta-agonists (albuterol,
	fluid-filled lungs and clinics of		terbutaline, formoterol, salmeterol),
	non-cardiogenic pulmonary		methylprednisolone;
	edema);		12) Iron and folate supplementation;
	Risk of myocarditis, pericarditis;		13) H1-antihistamine diphenhydramine
	QT prolongation;		(antimuscarinic effects) (pre-clinical
	Shock is likely but as a complex		studies).
	phenomenon – arrhythmogenic,		
	cardiogenic, non-cardiogenic;		
	Asphyxia is likely due to		
	muscarinic-related		
	bronchoconstriction,		
	bronchorrhea, nicotinic-related		
	depression of respiration, and		
	central neurotoxicity with		
	respiratory failure.		
Vesicating agents (Reddy,	Sulfur mustards efficiently	Urine - concentrations of	Decontamination: oxidation or chlorinat
2024; Brunka et al., 2022;	displace chloride ions through	thiodiglycol, 1,1'-	ion, using household bleach (sodium
Wikipedia, 2024) [@] :	intramolecular nucleophilic	sulfonylbismethylthioetha	hypochlorite), or by nucleophilic attack
Mustard: sulfur mustard	substitution, forming cyclic	ne (SBMTE), a	using decontamination solutions such
(SM), nitrogen mustard	sulfonium ions. These highly	conjugation product with	as "DS2" (2% NaOH,
(NM);	reactive intermediates tend to	glutathione.	70% diethylenetriamine, 28% 2-
Others: lewisite, acrolein,	irreversibly alkylate DNA		methoxyethanol).
hydrogen fluoride,	nucleotides, impeding cellular		
phosgene oxime.	division and ultimately triggering		Therapy (Reddy, 2024):
	programmed cell death.		Conventional burn therapy;
	Alternatively, if cell death is not		Anti-inflammatory agents (e.g.,
	immediate, the DNA damage can		dexamethasone);
	predispose to cancerogenic and		Antioxidants;
	mutagenic. Additionally, mustard		Farnesoid receptor activation;
	gas toxicity may involve		Immunomodulators;
	oxidative stress.		Wound/tissue repair agents;
			Russian-specific antidote "Pentiphin"
	Among clinical manifestations		(pilot clinical trials).**
	are:		Russian antidote to SM (pre-clinical
	Chemical burns;		
			studies, pilot clinical studies).**

	Severe skin and ocular injuries;		Sodium 2-mercaptoethane sulfonate
			_
	Lung injury with respiratory		(Mesna) as an antidote to SM;
	failure.		Farnesoid receptor activation (e.g.,
			obeticholic acid) - for NM-induced lung
			injury;
			Therapy of lung injury.
Pulmonary agents (Reddy,	Acute lung injury and acute	Urine (for mustard) -	Specific therapy (Reddy, 2024):
2024; Brunka et al., 2022;	respiratory distress syndrome that	concentrations of	Mustard: see above;
Wikipedia, 2024) [@] :	can cause long-term respiratory	thiodiglycol, 1,1'-	Chlorine: there is officially no antidote;
Lower pulmonary: chlorine,	depression.	sulfonylbismethylthioetha	gas masks with activated charcoal or other
phosgene, phosphine,		ne (SBMTE), a	filters are highly recommended for
isocyanate;	Chlorine reacts with water in	conjugation product with	protection;
Upper pulmonary:	the mucosa of the lungs to	glutathione.	Russian antidote to pulmonary
ammonia, sulfur dioxide,	form hydrochloric acid, which is		toxicants and combustion products:
hydrogen fluoride.	destructive to living tissue and	Chlorine: pulse oximetry,	combined bronchiolytics and the
	potentially lethal.	testing serum electrolytes,	substance "BIF" (pre-clinical studies,
		blood urea nitrogen, and	pilot clinical studies).**
		creatinine levels,	
		measuring arterial blood	
		gases, chest radiography,	
		electrocardiogram,	
		pulmonary function	
		testing, and laryngoscopy	
		or bronchoscopy.	
Metabolic and Cellular	Blood, cellular, and metabolic	Urine and blood –	Specific therapy (Reddy, 2024):
agents (Reddy, 2024;	dysfunction.	arsenicals detection,	Hydroxocobalamin (Cyanokit) – in case of
Brunka et al., 2022;		chemical tests for	acute cyanide poisoning;
Wikipedia, 2024) [@] :	The cyanide anion functions as	cyanides; blood tests, liver	An older cyanide antidote kit includes
Cyanides: hydrogen	an inhibitor of cytochrome c	function tests, blood urea	three substances: amyl nitrite pearls
cyanide, hydrogen sulfide;	oxidase. It binds to the iron	nitrogen, calcium, or	(administered by inhalation), sodium
Arsenicals: arsenic trioxide,	component of the enzyme,	electrolytes; in the case of	nitrite, and sodium thiosulfate;
thallium sulfate, arsine.	impeding the transfer of electrons	thallium poisoning – hair	Effective antidote for cyanide and azide –
	from cytochrome c to oxygen.	microscopic analysis (a	Cobalt (II/III) complex CoN4.
	Consequently, the normal	tapered anagen hair with	Arsenicals: British anti-Lewisite;
	functioning of the electron	black pigmentation at the	Thallium: (a) Prussian blue (potassium
	transport chain is disrupted,	base (anagen effluvium).	ferric hexacyanoferrate), (b)
	leading to the cell's inability to	-	(0)
	- *		

			Volume 0, 100.1 202
	produce ATP through aerobic		hemodialysis and hemoperfusion, (c)
	means. This disruption		additional potassium, (d) other
	particularly impacts tissues		methods: stomach pumping, activated
	relying on aerobic respiration,		charcoal, or bowel irrigation.
	such as the central nervous		
	system and the heart.		
	Poisoning by thallium		
	(demonstrates parallels to crucial		
	alkali metal cations, notably		
	potassium, which, when		
	substituted, disturb numerous		
	cellular processes by impeding		
	the function of proteins that		
	utilize cysteine, an amino acid		
	rich in sulfur), can be associated		
	with neurological symptoms		
	(tremors, headache, insomnia,		
	seizures, ataxia,		
	ascending peripheral		
	neuropathies, coma, and possible		
	death) and hair loss, frequently -		
	abdominal pain, vomiting, and		
	diarrhea (it requires differential		
	diagnosis with poisoning by		
	radioactive agents).		
Pharmaceutical agents	Medication-related clinical	Medication-related	Specific therapy (Reddy, 2024):
(Reddy, 2024; Brunka et	manifestation.	diagnostics in urine or	Specific pharmaceutical antidotes; in the
al., 2022; Wikipedia,		blood: immunochemical	case of convulsants - see above;
2024) [@] :	Fentanyl ranks among the most	test, GC-MS/MS or LC-	Naloxone is the antidote to fentanyl;
Anticoagulants:	powerful opioids, being 100	MS/MS.	Mechanical ventilation (if necessary),
brodifacoum,	times more potent than morphine.		activated charcoal;
bromadiolone;	As a highly lipophilic substance,		Russian antidote to opioid mimetics:
Opioids: fentanyl, diacetyl	it readily permeates tissue		"Kupol" ("Dome") (pilot clinical trials).**
morphine, carfentanil,	compartments, particularly the		
acetylfentanyl, sufentanyl,	central nervous system, clinically		
remifentanil;	manifesting as an opioid		
	l		267

Commission	toxidrome with a distinct	[- -
Convulsants: picrotoxin,			
TETS, strychnine;	presentation characterized by		
Others: pyridostigmine	bradycardia, bradypnea, and		
bromide, DEET,	hypotonia.		
permethrin.			
	Radiologic	al Warfare Agents	
Polonium-210 (Reddy,	Polonium-210 is radioactive (one	Chromosome analysis	Antidote does not exist.
2024, Brunka et al., 2022,	of the most radiotoxic) and emits	(e.g., dicentric count)	First, remove clothing and wash
Nathwani et al., 2016,	high-energy alpha particles (166	(assessing the effect of	downright.
Jefferson et al., 2009,	TBq/g, with a range of 40-50	radiation on the body and	Therapy:
Wikipedia, 2024)	micrometers), with half-lives of	estimating its dose);	Gastric lavage of aspiration (during an
	138.38 days. The product of its	Urine and feces, possible	hour after ingestion);
	decay is lead isotope 206Pb. The	in bile, sweat, and hair -	Antiemetic drugs;
	metabolic pathway is mainly	detection of 210Po (e.g.,	Intravenous fluids and analgesics;
	unknown. The elimination half-	gamma-ray spectroscopy);	Treatment of bone marrow failure; if
	life in humans is 30–50 days. The	A complete toxicological	necessary: (a) blood products transfusion;
	fatal oral amount is about 10–30	examination is highly	(b) GSF – granulocyte colony-stimulating
	mg (in the absence of medical	recommended (used	factor, (c) a pegylated granulocyte colony-
	treatment).	historically with thallium	stimulating factor Pegfilgrastim -
		sulfate to disguise the	stimulates the formation of neutrophils;
	Poisoning emerges when:	primary agent).	(d) stem cell transfusion;
	1) ingested orally;		Chelation therapy, e.g., Dimercaprol
	2) through the open wounds;		(British Anti-Lewisite) (with
	3) breathing polluted air.		penicillamine as an alternative), 2,3,-
			dimercapto-1-propanesulfonic acid, meso-
	Its highest concentration and		dimercaptosuccinic acid, or N,N ⁻ -
	related organ failure are		dihydroxyethylethelene-diamine-N,N'-bis-
	documented for the blood		dithiocarbamate (pre-clinical studies, pilot
	(anemia with advancing		clinical studies);
	pancytopenia) and soft tissues		Supportive and palliative care: ventilation,
	such as the liver, spleen, bone		haemofiltration, and cardiac support;
	marrow (if the absorbed dose is		Hydroxyquinoline derivatives: effective
	0.7-10 Gy), kidneys, and skin,		antagonists of oxygen/superoxide-
	then - the gastrointestinal tract		mediated radio-sensitizing effects.
	(>6 Gy) and gonads.		

	It causes acute radiation		
	syndrome (early emesis, hair loss,		
	and bone marrow failure) if >0.7		
	Gy.		
	Symptoms to suspect poisoning:		
	nausea, vomiting, and bloody		
	diarrhea of unknown etiology,		
	alopecia;		
	Diagnosis can be missed due to		
	the absence of the obligatory		
	symptoms.		
	There is no data about the		
	association of poisoning with		
	major cardiovascular events		
	(concentration in the heart is >10-		
	20 times lower than in the		
	kidneys or liver; cardiovascular		
	syndrome appears when >20-50		
	Gy manifesting with acute		
	myocarditis, myocardial edema,		
	cardiac hypertrophy, and		
	fibrinous pericarditis). However,		
	the patient dies due to		
	cardiorespiratory arrest as a result		
	of multiple organ failure.		
	The survival rate is high if <3.5		
	Gy. The mortality is above 50%		
	if>5.5 Gy.		
1	1	1	1

Abbreviations: GC-MS/MS – gas chromatography-tandem mass spectrometry, LC-MS/MS – liquid chromatography-tandem mass spectrometry, OPCW - Organization for the Prohibition of Chemical Weapons, VX – venomous agent X (nerve agent), DFP – diisopropyl fluorophosphate (nerve gas), TETS –

tetramethylenedisulfotetramine (neurotoxin and convulsant), DEET – N, N-Diethyl-meta-toluamide (diethyltoluamide), PON1 – paraoxonase 1, AChE – acetylcholinesterase, BChE – butyrylcholinesterase, ACh – acetylcholine, NMDAR - N-methyl-D-aspartate receptor, PVA - polyvinyl alcohol, Borax - sodium tetraborate, Gy - the gray is the unit of ionizing radiation dose in the International System of Units (SI), defined as the absorption of one joule of radiation energy per kilogram of matter.

* A-agents on the list of the Annex on Chemicals to the OPCW Chemical Weapons Convention of December 23, 2019.

** The terms "intelligence" and "Russian substances" in the passage indicate the Russian Intelligence Service (so-called FSB) and antidotes to lethal agents developed by the Russian intelligence or military branches.

[§] See Gupta (2020)

^{\$} See Doctor and Saxena (2005)

[@] See StatPearls (Internet Book of NIH PubMed) (2024). Treasure Island (FL): StatPearls Publishing; 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK430685/ [Accessed on March 31, 2024].

References

Bellingcat Investigation Team (2020). Russia's Clandestine Chemical Weapons Programme and the GRU's Unit 29155. Bellingcat, October 23, 2020. Available from: https://www.bellingcat.com/news/uk-and-europe/2020/10/23/russias-clandestine-chemical-weapons-programme-and-the-grus-unit-21955/ [Accessed March 3 2024].

Brunka, Z., Ryl, J., Brushtulli, P., Gromala, D., Walczak, G., Zięba, S., Pieśniak, D., Sein Anand, J., Wiergowski, M (2022). Selected Political Criminal Poisonings in the Years 1978-2020: Detection and Treatment. Toxics, 10(8), 468. doi: https://doi.org/10.3390/toxics10080468. PMID: 36006147; PMCID: PMC9413450.

Carroll, R., Harding, L. (2024). On the run from Russia: the defector to Ukraine shot dead on the Costa Blanca [online]. The Guardian, February 24, 2024. Available from: https://www.theguardian.com/world/2024/feb/24/on-the-run-from-russia-the-defector-to-ukraine-shot-dead-on-the-costa-blanca [Accessed March 15 2024].

Cha, Y.S., Kim, H., Go, J., Kim, T.H., Kim, O.H., Cha, K.C., Lee, K.H., Hwang, S.O. (2014). Features of myocardial injury in severe organophosphate poisoning. Clin Toxicol (Phila), 52(8), 873-9. doi: https://doi.org/10.3109/15563650.2014.944976. PMID: 25116419.

Charejoo, A., Arabfard, M., Jafari, A., Nourian, Y.H. (2023). A complete, evidence-based review on novichok poisoning based on epidemiological aspects and clinical management. Front Toxicol, 4, 1004705. doi: https://doi.org/10.3389/ftox.2022.1004705. PMID: 36762227; PMCID: PMC9905702.

Crerar, P., Henley, J., & Wintour, P. (2018). Russia accused of cyber-attack on chemical weapons watchdog [online]. The Guardian, October 4, 2018. Available from: https://www.theguardian.com/world/2018/oct/04/netherlands-halted-russian-cyber-attack-on-chemical-weapons-body [Accessed March 3 2024].

Doctor, B.P., Saxena, A. (2005). Bioscavengers are used to protect humans against organophosphate toxicity. Chem Biol Interact, 157-158, 167-71. doi: https://doi.org/10.1016/j.cbi.2005.10.024. PMID: 16293236.

Ikani, N., Meyer, C.O. (2023). The underlying causes of strategic surprise in EU foreign policy: a post-mortem investigation of the Arab uprisings and the Ukraine–Russia crisis of 2013/14. European Security, 32(2), 270-293. doi: https://doi.org/10.1080/09662839.2022.2140009.

Gupta, R.C. (2020). Chapter Two - Neurotoxicity of organophosphate nerve agents. In: Aschner M, Costa LG. Advances in Neurotoxicology. Cambridge, MA: Academic Press, 4, 79-112. doi: https://doi.org/10.1016/bs.ant.2019.11.001.

Jefferson, R.D., Goans, R.E., Blain, P.G., Thomas, S.H. (2009). Diagnosis and treatment of 379-92. polonium poisoning. Clin Toxicol (Phila), 47(5), doi: https://doi.org/10.1080/15563650902956431. in: Clin Toxicol (Phila) Erratum 2009;47(6):608. PMID: 19492929.

Kuo, H.S., Yen, C.C., Wu, C.I., Li, Y.H., Chen, J.Y. (2017). Organophosphate poisoning presenting as out-of-hospital cardiac arrest: A clinical challenge. J Cardiol Cases, 16(1), 18-21. doi: https://doi.org/10.1016/j.jccase.2017.03.006. PMID: 30279788; PMCID: PMC6149259.

Nathwani, A.C., Down, J.F., Goldstone, J., Yassin, J., Dargan, P.I., Virchis, A., Gent, N., Lloyd, D., Harrison, J.D. (2016). Polonium-210 poisoning: a first-hand account. Lancet, 388(10049), 1075-1080. doi: https://doi.org/10.1016/S0140-6736(16)00144-6. PMID: 27461439.

National Highway Traffic Safety Administration's Office of Emergency Medical Services (2024). Nerve Agent Information for Emergency Medical Services and Hospitals. Available from: https://www.ems.gov/assets/Nerve_Agent_Info_for_EMS_and_Hospitals.pdf [Accessed March 15 2024].

Opravil, J., Pejchal, J., Finger, V., Korabecny, J., Rozsypal, T., Hrabinova, M., Muckova, L., Hepnarova, V., Konecny, J., Soukup, O., Jun, D. (2023). A-agents, misleadingly known as "Novichoks": a narrative review. Arch Toxicol, 97(10), 2587-2607. doi: https://doi.org/10.1007/s00204-023-03571-8. PMID: 37612377; PMCID: PMC10475003.

Reddy, D.S. (2024). Progress and Challenges in Developing Medical Countermeasures for Chemical, Biological, Radiological, and Nuclear Threat Agents. J Pharmacol Exp Ther,

388(2), 260-267. doi: https://doi.org/10.1124/jpet.123.002040. PMID: 38233227; PMCID: PMC10801730.

Riehle, K.P. (2024). Ignorance, indifference, or incompetence: why are Russian covert actions so easily unmasked? Intelligence and National Security. doi: https://doi.org/10.1080/02684527.2023.2300165.

Steindl, D., Boehmerle, W., Körner, R., Praeger, D., Haug, M., Nee, J., Schreiber, A., Scheibe, F., Demin, K., Jacoby, P., Tauber, R., Hartwig, S., Endres, M., Eckardt, K.U. (2021). Novichok nerve agent poisoning. Lancet, 397(10270), 249-252. doi: https://doi.org/10.1016/S0140-6736(20)32644-1. PMID: 33357496.

Stewart, W. (2024). Putin's nemesis Alexei Navalny was 'killed by new poison leading to death in terrible agony' [online]. Mirror, February 26, 2024. Available from: https://www.mirror.co.uk/news/world-news/putins-nemesis-alexei-navalny-killed-32213231/ [Accessed March 3 2024].

Wikipedia (2024).Suspicious deaths of Russian businesspeople (2022–2024) [online].Wikipedia,2024.Availablefrom:https://en.wikipedia.org/wiki/Suspicious_deaths_of_Russian_businesspeople_(2022-2024)[Accessed March 3 2024].